29,485 research outputs found

    Reply to Hagen & Sudarshan's Comment

    Full text link
    We show that the argument in Phys Rev Lett 70 (1993) 1360 is correct and consistent, and that Hagen & Sudarshan's solution has inconsistency leading to non-vanishing commutators of [P1,P2][P^1, P^2] and [Pj,H][P^j, H] even in physical states. This proves that many of HS's statements in their Comment are based merely on incorrect guess, but not on careful algebra.Comment: one page, UMN-TH-1245/9

    Temperature effect on space charge dynamics in XLPE insulation

    No full text
    This paper reports on space charge evolution in crosslinked polyethylene (XLPE) planar samples approximately 1.20 mm thick subjected to electric stress level of 30 kVdc/mm under four temperature 25 oC, 50 oC, 70 oC and 90 oC for 24 hours. Space charge profiles in both as-received and degassed samples were measured using the laser induced pressure pulse (LIPP) technique. The dc threshold stresses at which space charge initiates are greatly affected by testing temperatures. The results suggest that testing temperature has numerous effects on space charge dynamics such as enhancement of ionic dissociation of polar crosslinked by-products, charge injection, charge mobility and electrical conductivity. Space charge distributions of very different nature were seen at lower temperatures when comparing the results of as-received samples with degassed samples. However at higher temperature, the space charge distribution took the same form, although of lower concentration in degassed samples. Space charge distributions are dominated by positive charge when tested at high temperatures regardless of sample treatment and positive charge propagation enhances as testing temperature increases. This can be a major cause of concern as positive charge propagation has been reported to be related to insulation breakdown

    The effect of degassing on morphology and space charge

    No full text
    It is believed that space charge buildup in cross-linked polyethylene (XLPE) insulation is the main cause for premature failure of underground power cables. The space charge activities in XLPE depend on many factors such as additives, material treatment, ambient temperature, insulator/electrode interface, etc. Degassing is one of the material treatment process commonly employ in cable manufacturing to improve insulation performance. In this paper, investigation on the effect of degassing period has on the morphology and space charge was carried out. Planar XLPE samples of the same composite were subjected to different degassing time. It is discovered that apart from removing volatile by-products, degassing also anneal XLPE material; changing the morphology as a result

    Multiple Chern-Simons Fields on a Torus

    Full text link
    Intertwined multiple Chern-Simons gauge fields induce matrix statistics among particles. We analyse this theory on a torus, focusing on the vacuum structure and the Hilbert space. The theory can be mimicked, although not completely, by an effective theory with one Chern-Simons gauge field. The correspondence between the Wilson line integrals, vacuum degeneracy and wave functions for these two theories are discussed. Further, it is obtained in both of these cases that the two total momenta and Hamiltonian commute only in the physical Hilbert space.Comment: 20 pages, UMN-TH-1128/93, plain Te

    Efficient out-coupling and beaming of Tamm optical states via surface plasmon polariton excitation

    Get PDF
    We present evidence of optical Tamm states to surface plasmon polariton (SPP) coupling. We experimentally demonstrate that for a Bragg stack with a thin metal layer on the surface, hybrid Tamm-SPP modes may be excited when a grating on the air-metal interface is introduced. Out-coupling via the grating to free space propagation is shown to enhance the transmission as well as the directionality and polarization selection for the transmitted beam. We suggest that this system will be useful on those devices, where a metallic electrical contact as well as beaming and polarization control is needed

    Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control strategies

    Get PDF
    Vehicular emission is one of the important anthropogenic pollution sources for volatile organic compounds (VOCs). Four characterization campaigns were conducted at a representative urban roadside environment in Hong Kong between May 2011 and February 2012. Carbon monoxide (CO) and VOCs including methane (CH4), non-methane hydrocarbons (NMHCs), halocarbons, and alkyl nitrates were quantified. Both mixing ratios and compositions of the target VOCs show ignorable seasonal variations. Except CO, liquefied petroleum gas (LPG) tracers of propane, i-butane and n-butane are the three most abundant VOCs, which increased significantly as compared with the data measured at the same location in 2003. Meanwhile, the mixing ratios of diesel- and gasoline tracers such as ethyne, alkenes, aromatics, halogenated, and nitrated hydrocarbons decreased by at least of 37%. The application of advanced multivariate receptor modeling technique of positive matrix factorization (PMF) evidenced that the LPG fuel consumption is the largest pollution source, accounting for 60 ± 5% of the total quantified VOCs at the roadside location. The sum of ozone formation potential (OFP) for the target VOCs was 300.9 Όg-O3 m-3, which was 47% lower than the value of 567.3 Όg-O3 m-3 measured in 2003. The utilization of LPG as fuel in public transport (i.e., taxis and mini-buses) contributed 51% of the sum of OFP, significantly higher than the contributions from gasoline- (16%) and diesel-fueled (12%) engine emissions. Our results demonstrated the effectiveness of the switch from diesel to LPG-fueled engine for taxis and mini-buses implemented by the Hong Kong Special Administrative Region (HKSAR) Government between the recent ten years, in additional to the execution of substitution to LPG-fueled engine and restrictions of the vehicular emissions in compliance with the updated European emission standards

    Investigation of defect cavities formed in three-dimensional woodpile photonic crystals

    Get PDF
    We report the optimisation of optical properties of single defects in three-dimensional (3D) face-centred-cubic (FCC) woodpile photonic crystal (PC) cavities by using plane-wave expansion (PWE) and finite-difference time-domain (FDTD) methods. By optimising the dimensions of a 3D woodpile PC, wide photonic band gaps (PBG) are created. Optical cavities with resonances in the bandgap arise when point defects are introduced in the crystal. Three types of single defects are investigated in high refractive index contrast (Gallium Phosphide-Air) woodpile structures and Q-factors and mode volumes (VeffV_{eff}) of the resonant cavity modes are calculated. We show that, by introducing an air buffer around a single defect, smaller mode volumes can be obtained. We demonstrate high Q-factors up to 700000 and cavity volumes down to Veff<0.2(λ/n)3V_{eff}<0.2(\lambda/n)^3. The estimates of QQ and VeffV_{eff} are then used to quantify the enhancement of spontaneous emission and the possibility of achieving strong coupling with nitrogen-vacancy (NV) colour centres in diamond.Comment: 12 pages, 11 figure

    High Purcell factor photonic crystal cavities for single photon sources

    Get PDF

    Numerical analysis of the Iosipescu specimen for composite materials

    Get PDF
    A finite element analysis of the Iosipescu shear tests for unidirectional and cross-ply composites is presented. It is shown that an iterative analysis procedure must be used to model the fixture-specimen kinematics. The correction factors which are needed to compensate for the nonuniformity of stress distribution in calculating shear modulus are shown to be dependent on the material orthotropic ratio and the finite element loading models. Test section strain distributions representative of typical graphite-epoxy specimens are also presented

    Two--Electron Atoms in Short Intense Laser Pulses

    Full text link
    We discuss a method of solving the time dependent Schrodinger equation for atoms with two active electrons in a strong laser field, which we used in a previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to calculate ionization, double excitation and harmonic generation in Helium by short laser pulses. The method employs complex scaling and an expansion in an explicitly correlated basis. Convergence of the calculations is documented and error estimates are provided. The results for Helium at peak intensities up to 10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly accurate calculations are presented for electron detachment and double excitation of the negative hydrogen ion.Comment: 14 pages, including figure
    • 

    corecore